propositional 

67735
单词释义
命题的
单词例句
The propositional logic course covers the basics of logical reasoning.
谓词逻辑课程涵盖了逻辑推理的基础。
A key concept in propositional logic is the truth value of a statement.
在命题逻辑中,一个关键概念是陈述的真值。
The conjunction of two propositional variables P and Q is represented as "P ∧ Q".
- 两个命题变量P和Q的合取表示为"P ∧ Q"。
To prove a propositional formula invalid, one must find an assignment of truth values that makes it false.
为了证明一个命题公式无效,必须找到一个真值赋值使其为假。
The negation of the proposition "It is raining" is "It is not raining".
- 命题“正在下雨”的否定是“没有下雨”。
Disjunction in propositional logic allows us to combine statements using "or", as in "P ∨ Q".
- 命题逻辑中的析取允许我们使用“或”来组合语句,如"P ∨ Q"。
Implication, denoted by "P → Q", means if P is true, then Q must also be true for the proposition to hold.
含义,用"P → Q"表示,意味着如果P为真,则Q也必须为真,该命题才成立。
A tautology in propositional logic is a formula that is always true, regardless of the truth values of its components.
命题逻辑中的重言式是一个不论其组成部分的真值如何总是为真的公式。
Contradiction, on the other hand, is a propositional formula that is always false.
另一方面,矛盾是一个命题公式,它总是假的。
Propositional logic also deals with conditional statements and their equivalents, such as "P ↔ Q", which means P is true if and only if Q is true.
命题逻辑还涉及条件语句及其等价形式,如"P ↔ Q",这意味着P为真当且仅当Q为真。
未经许可,严禁转发。QQ交流群:688169419
0
近30天助记贡献排行榜
网友新增怎么记信息
最新查询次数奖励榜
0