Mahout is an open-source library for scalable machine learning.
马哈多是一个用于可扩展机器学习的开源库。
With Mahout, you can build recommendation engines to suggest products to users.
通过马哈多,你可以构建推荐引擎来向用户推荐产品。
Mahout uses distributed computing frameworks like Hadoop to process large data sets.
马哈多使用如Hadoop的分布式计算框架处理大数据集。
The collaborative filtering algorithms in Mahout are widely used in e-commerce.
马哈多中的协同过滤算法在电子商务中被广泛应用。
Mahout also provides tools for clustering and classification of data.
马哈多还提供了数据聚类和分类的工具。
In Mahout, decision trees and random forests can be created for predictive modeling.
在马哈多中,可以创建决策树和随机森林进行预测建模。
The library includes various methods for feature selection and dimensionality reduction.
该库包括各种特征选择和降维的方法。
Mahout is written in Java and has a rich set of APIs for developers.
马哈多是用Java编写的,为开发者提供了一套丰富的API。
Apache Mahout is actively maintained and updated by a community of contributors."
Apache马哈多由一群贡献者活跃维护和更新。
One can use Mahout for sentiment analysis on social media data.
人们可以使用马哈多对社交媒体数据进行情感分析。
未经许可,严禁转发。QQ交流群:688169419